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Understanding Information Entropy 
 

In discussions of random number generation (RNG), people often talk about the term “entropy” as if it was 
interchangeable with the term “random.” For example: 

 The random seed is taken from an entropy pool. 

 Entropy bits are added to the pool from external sources such as mouse and keyboard activity, disk 

I/O operations, and specific interrupts. 

 Cloned sibling Virtual Machines may have loads of entropy in each of their pools, but they are all the 

same entropy copied over from the same frozen state. 

 A RNG seeded with insufficient entropy produces predictable keys. 

 RNG failures are often rooted in bad entropy. 

 Software systems face the security problem of lacking entropy. 

Use of the term “entropy” in these examples suggests that entropy is a kind of bit-string that: 

 has something to do with randomness 

 can form a pool 

 can be compared as same or different 

 can be described as good or bad 

 can be attributed as sufficient or insufficient 
 
If this is meant to be a riddle, then what is the mysterious object (or concept) hidden behind the term 
“entropy”? 
 

In his 1948 paper "A Mathematical Theory of Communication", Claude E. Shannon introduced a notion of 
quantifying the expected value of the information contained in a message, usually in units such as bits. This 
became the well-known Shannon entropy. Shannon entropy is a measure of the average information content 
one is missing when one does not know the value of the random variable. 

The core idea of entropy is that it is the expected average information content associated with a random 
variable. Mathematically, Shannon denoted the entropy H of a discrete random variable X with possible 
values {x1, .., xn} and possibility p(xi) (i=1,…n) for X taking value xi as 

 

Where b is the base of the logarithm used and I(xi) denotes the information content of xi. In particular, for b=2, 
the unit of entropy is a bit. 

Consider tossing a coin with known probabilities of the coin landing with “heads” or “tails” showing. The 

entropy reaches the maximum value when the coin has  equal probability ½ of landing with “heads” side up 
or “tails” side up (i.e. the coin is fair). In the case of fair coin, it is the most uncertain situation to predict the 
outcome of the next toss. Hence, the result of each toss of the coin delivers a full 1 bit of information. 
Assuming that the probability of heads p(x1) = 1– the probability of tails p(x2), the correlation between the 
entropy H(X) (i.e. the expected uncertainty) of a coin flip, measured in bits, and p(x1) can be illustrated by the 
graph below:  
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In general, if a variable X has 2

n
 possible values and all of them have the equal possibility for being the real 

value of X, then the entropy H(X) reaches its maximum n, meaning that the outcome of X being a certain 
value delivers the full n bits of information. It requires two necessary conditions for the entropy to maximally 
reach the full n bits of information:  

1. There are 2
n
 possible values for X to take value from. 

2.  All possible values of X have the uniform probability distribution to be realized.  
 
If a variable X has k possible values where 2

n-1
<k<2

n
 for some n, the uniformly distributed probabilities of its 

possible values can still maximizes the entropy H(X), but H(X) will be less than n bits of information. The 
unevenly distributed probabilities of the possible values will further reduce the entropy H(X). 
 
In a reference book on cryptography titled “Fundamentals of Cryptology,” Professor Henk van Tilborg points 
out that one can give the following interpretations to the entropy H(X) of a random variable X: 

 The expected amount of information that a realization of X gives 

 Our uncertainty about X 

 The expected number of bits needed to describe an outcome of X 
 

With these interpretations in mind, one can expect the entropy function H(X) to have the following properties: 
1. Adding another possible value to X but with probability 0 of realization does not affect the uncertainty 

about X. 
2. The order of the stated possible values of X does not change the entropy of X. 
3. The uncertainty of X is maximized if all of its possible values have equal probability of realization. 
4. The expected number of bits necessary to describe an outcome from variable X increases 

proportionally to the number of possible outcomes of X with the uniformly distributed probability of 
realization. 

 
Many entropy measures defined in information theory satisfy the above stated properties. Shannon entropy is 
just one of them. NIST SP 800-90A uses a very conservative measure min-entropy (i.e. Hmin (X)) that is 
defined as  

Hmin (X) = - lg2(Pmax), 
 
where Pmin is the maximum probability among the probabilities of all possible outcomes. Min-entropy is a 
more conservative estimate of entropy than Shannon entropy, since min-entropy is always less than Shannon 
entropy. 
 
Regardless of how the mathematical formula defining information entropy varies from one to another, the 
common feature of the mathematical definitions of information entropy is always about an attribute of a 
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variable whose possible values fall within a given set with an associated probability for each possible value. 
So, there are two key components involved in the definition of information entropy: one is a given set of all 
possible values, and the other is the set of the associated probabilities. Entropy is a property directly related 
to a set as opposed to elements within the set. There is a fundamental difference between a set and the 
elements within. Below is a story to illustrate this difference. 
 
A very hungry caterpillar finally felt full after she ate a slice of watermelon, a cupcake, a sausage, a piece of 
berry-cake and a lollipop. However, when she reflected on the cause (i.e. food) and effect (i.e. being full), she 
concluded that it was the lollipop that made her full and the other food she ate before the lollipop was 
completely a waste. From that point on, she decided to eat only one lollipop for each meal. 

 
We know that being full is a cumulative result of eating the entire set of food illustrated in the picture above 
instead of a result tied up to a single item of food – the lollipop.  
 
From the mathematical perspective, it is crystal clear that information entropy is a notion of an average 
information content carried in one realization of a possible outcome of a variable. However, most causal 
discussions of entropy (as exemplified at the beginning of this article), suggests that entropy bits are so real 
that one can actually point them out from this 32-bit string “10011000111011010001010100110110”. This is 
the puzzling, confusing, and mismatched idea that I will clarify below. 
 
The description of the .58 child in an average family given in the children’s book “The Phantom Tollbooth” by 
Norton Juster and Jules Feiffer paints a vivid picture of how a child might perceive this notion of “average” 
and explains the mismatch between the formal mathematical definition of information entropy and casual 
discussions of entropy.  
 

 
 
Above is the scene where a character in the book named Milo met the .58 child  
 
The story from the book roughly goes like this: The character named Milo met the .58 child who is one half of 
a small child being divided neatly from top to bottom and asked sympathetically, “What is the rest of your 
family like?” “Oh, we’re just the average family,” the child said thoughtfully; “mother, father, and 2.58 children 
– and, as I explained, I’m the .58.” 
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“It must be rather odd being part of a person,” Milo remarked. “Not at all,” said the child. “Every average 
family has 2.58 children, so I always have someone to play with. Besides, each family also has average of 
1.3 automobiles, and since I’m the only one who can drive three tenths of a car, I get to use it all the time.” 
 
“But averages aren’t real,” objected Milo; “they’re just imaginary.” 
 
I hope the above story helps everyone understand that entropy bits are not real bits in a bit-string, and they 
do not form a pool called an “entropy pool.” Entropy bits are just like the .58 child in an average family. They 
are not real. One cannot point to them in the same way as he points to a real child in any real family. The 
number of children varies for an average American family, or for an average Indian family, or for an average 
Chinese family. The notion of average is tied up to a set (e.g. the set of all American families, the set of all 
Indian families, the set of all Chinese families, and so on) based upon which the average is calculated. As 
such, information entropy, being the average information content, is also tied up to the underlying set (which 
consists of all possible values of the variable whose entropy is in question).  
 
With this clarification in mind, the misperception that the entropy of a bit-string pool gets reduced after a 
certain value from the pool is observed should vanish. Consider a sequence of coin tossing events again. 
Observing a “heads”, does not reduce the uncertainty of what the outcome will be for the next toss (provided 
that the coin is fair).  
 
By contrast, the size of the pool and the probability of occurrences for each bit-string in the pool has a 
significant impact on the resulting entropy. As a matter of fact, they are the two determining factors in the 
mathematical formula to calculate the information entropy. For example, consider a set of key-stroke timings 
with a millisecond incremental timer. Assume that normally a key stoke takes 0.5 second plus/minus 0.1 
second. Then there are 200 possible values to measure the time that a key stroke takes. Assuming that all of 
these 200 possible values have the identical probability of being the real timing of a key stroke, then it 
amounts to 7-8 bits of entropy for the set of possible timings for a key stroke. If the timer has a higher 
resolution and provides a microsecond increment, then there will be 200,000 possible timings for a key 
stroke. Still keeping the assumption that all possible values have the equal chance to be the real timing for a 
key stroke, and then the resulting entropy of that much enlarged set of possible timings will be 17-18 bits.  
 
In theory, the probability distribution is given prior to the calculation of the entropy. In reality, the probability of 
each outcome is obtained through the statistical means. That all possible outcomes have an identical 
probability for realization is a big assumption. This assumption is often checked against the statistical test 
suite specified in NIST SP 800-22 (http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf 
). A sequence of outcomes that passes this NIST test suite statistically confirms that the outcomes are indeed 
evenly distributed, with a more or less identical probability of occurrences. The larger the sequence of 
outcomes that pass the test suite; the higher the assurance that each outcome has the same probability of 

http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
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occurrences is. The commonly used entropy estimate tool ENT (http://www.fourmilab.ch/random/ ) calculates 
the entropy value based on the probability distribution that is also gathered by the statistical means over a 
collection of bytes. Again, the more bytes that are run through ENT, the more accurate the entropy estimate 
will be. Due to the nature of the statistical approach, there is no guarantee that the sequence of the outcomes 
is truly random even though it may have passed the test suite. The statistical test suite should be used in 
conjunction with an analytic approach that provides the rationale for the randomness of outcomes.  
 
In conclusion, the term “entropy” in information technology literature is defined as a mathematical measure of 
randomness, but it’s also often used interchangeably with the word “random,” leaving out the idea of it being 
a numerical measure of randomness. If this is just used as a kind of shorthand for convenience’s sake, that’s 
fine. What’s important is that deep down to the core, we do understand what information entropy really is, the 
determining factors of entropy, how to analyze and justify an entropy source, and how to assess the quality of 
an entropy input. A good understanding of all these questions and the ability to answer them correctly are 
crucial in assessing the quality of a random number generator. 

http://www.fourmilab.ch/random/

